Lucas-Kanade Optical Flow on The GPU ==================================== An optical flow algorithm estimates the motion between frames. Optical flow is essential in object detection, object recognition, motion estimation, video compression, and video effects. This post covers an HLSL implementation of Lucas-Kanade optical flow. Algorithm --------- The pyramid LK algorithm consists of the following steps. #. Build the current frame's mipmap pyramid #. Set the initial motion vector to ``<0.0, 0.0>`` #. Compute optical flow from the smallest to largest pyramid level #. Immediately cache the current frame for the next frame #. Filter the optical flow Source Code ----------- .. note:: The code contains **generic** functions, so you may need to change some parts of the code so it is compatible with your setup. .. code-block:: none :caption: Converting to Spherical RGB /* This code is based on the algorithm described in the following paper: Author(s): Joost van de Weijer, T. Gevers Title: "Robust optical flow from photometric invariants" Year: 2004 DOI: 10.1109/ICIP.2004.1421433 https://www.researchgate.net/publication/4138051_Robust_optical_flow_from_photometric_invariants */ float3 RGBtoSphericalRGB(float3 RGB) { const float InvPi = 1.0 / acos(-1.0); // Precalculate (x*x + y*y)^0.5 and (x*x + y*y + z*z)^0.5 float L1 = length(RGB.xyz); float L2 = length(RGB.xy); // .x = radius; .y = inclination; .z = azimuth float3 RIA; RIA.x = L1 / sqrt(3.0); RIA.y = (L1 == 0.0) ? 1.0 / sqrt(3.0) : saturate(RGB.z / L1); RIA.z = (L2 == 0.0) ? 1.0 / sqrt(2.0) : saturate(RGB.x / L2); // Scale the angles to [-1.0, 1.0) range RIA.yz = (RIA.yz * 2.0) - 1.0; // Calculate inclination and azimuth and normalize to [0.0, 1.0) RIA.yz = acos(RIA.yz) * InvPi; return RIA; } .. code-block:: none :caption: Lucas-Kanade Optical Flow /* Lucas-Kanade optical flow with bilinear fetches. The algorithm is motified to not output in pixels, but normalized displacements. --- Gauss-Newton Steepest Descent Inverse Additive Algorithm https://www.ri.cmu.edu/pub_files/pub3/baker_simon_2002_3/baker_simon_2002_3.pdf --- Calculate Lucas-Kanade optical flow by solving (A^-1 * B) [A11 A12]^-1 [-B1] -> [ A11/D -A12/D] [-B1] [A21 A22]^-1 [-B2] -> [-A21/D A22/D] [-B2] [ Ix^2/D -IxIy/D] [-IxIt] [-IxIy/D Iy^2/D] [-IyIt] */ float2 LucasKanade ( float2 MainTex, // Texture coordinates float2 Vectors, // Previous motion vectors [-1.0, 1.0) sampler2D SampleT, // Template sampler2D SampleI // Image ) { // Initialize variables float4 WarpTex; float IxIx = 0.0; float IyIy = 0.0; float IxIy = 0.0; float IxIt = 0.0; float IyIt = 0.0; // Initiate main & warped texture coordinates WarpTex = MainTex.xyxy; // Calculate warped texture coordinates WarpTex.zw -= 0.5; // Pull into [-0.5, 0.5) range WarpTex.zw -= Vectors; // Inverse warp in the [-0.5, 0.5) range WarpTex.zw = saturate(WarpTex.zw + 0.5); // Push and clamp into [0.0, 1.0) range // Get gradient information float4 TexIx = ddx(WarpTex); float4 TexIy = ddy(WarpTex); float2 PixelSize = abs(TexIx.xy) + abs(TexIy.xy); // Get required data to calculate main window data const int WindowSize = 3; const int WindowHalf = WindowSize / 2; [loop] for (int i = 0; i < (WindowSize * WindowSize); i++) { float2 Kernel = float2(i % WindowSize, i / WindowSize) - WindowHalf; // Get temporal gradient float4 TexIT = WarpTex.xyzw + (Kernel.xyxy * PixelSize.xyxy); float3 T = tex2Dgrad(SampleT, TexIT.xy, TexIx.xy, TexIy.xy).xyz; float3 I = tex2Dgrad(SampleI, TexIT.zw, TexIx.zw, TexIy.zw).xyz; float3 IT = I - T; // Get spatial gradient float4 OffsetNS = Kernel.xyxy + float4(0.0, -1.0, 0.0, 1.0); float4 OffsetEW = Kernel.xyxy + float4(-1.0, 0.0, 1.0, 0.0); float4 NS = WarpTex.xyxy + (OffsetNS * PixelSize.xyxy); float4 EW = WarpTex.xyxy + (OffsetEW * PixelSize.xyxy); float3 N = tex2Dgrad(SampleT, NS.xy, TexIx.xy, TexIy.xy).xyz; float3 S = tex2Dgrad(SampleT, NS.zw, TexIx.xy, TexIy.xy).xyz; float3 E = tex2Dgrad(SampleT, EW.xy, TexIx.xy, TexIy.xy).xyz; float3 W = tex2Dgrad(SampleT, EW.zw, TexIx.xy, TexIy.xy).xyz; float3 Ix = E - W; float3 Iy = N - S; // IxIx = A11; IyIy = A22; IxIy = A12/A22 IxIx += dot(Ix, Ix); IyIy += dot(Iy, Iy); IxIy += dot(Ix, Iy); // IxIt = B1; IyIt = B2 IxIt += dot(Ix, IT); IyIt += dot(Iy, IT); } /* Calculate Lucas-Kanade matrix [ Ix^2/D -IxIy/D] [-IxIt] [-IxIy/D Iy^2/D] [-IyIt] */ /* Calculate Lucas-Kanade matrix */ // Construct matrices float2x2 A = float2x2(IxIx, IxIy, IxIy, IyIy); float2 B = float2(IxIt, IyIt); // Calculate C factor float N = dot(B, B); float2 DotBA = float2(dot(B, A[0]), dot(B, A[1])); float D = dot(DotBA, B); float C = N / D; // Calculate -C*B float2 Flow = (abs(D) > 0.0) ? -mul(C, B) : 0.0; // Normalize motion vectors Flow *= PixelSize; // Propagate normalized motion vectors in Norm Range Vectors += Flow; // Clamp motion vectors to restrict range to valid lengths Vectors = clamp(Vectors, -1.0, 1.0); return Vectors; }