Lucas-Kanade Optical Flow in HLSL

An optical flow algorithm estimates the motion between frames. Optical flow is essential in object detection, object recognition, motion estimation, video compression, and video effects.

This post covers an HLSL implementation of Lucas-Kanade optical flow.

Algorithm

The pyramid LK algorithm consists of the following steps.

  1. Build the current frame’s mipmap pyramid

    Encode the image into chromaticity with GetSphericalRG()

  2. Filter the current frame with a Gaussian blur

  3. Set the initial motion vector to <0.0, 0.0>

  4. Compute optical flow from the smallest to largest pyramid level

    Propagate the optical flow at each level

  5. Filter the optical flow with a Gaussian blur

  6. Store the current frame for use in the next frame

Note

The code contains generic functions, so you may need to change some parts of the code so it is compatible with your setup.

Source Code

/*
    This code is based on the algorithm described in the following paper:
    Author(s): Joost van de Weijer, T. Gevers
    Title: "Robust optical flow from photometric invariants"
    Year: 2004
    DOI: 10.1109/ICIP.2004.1421433
    Link: https://www.researchgate.net/publication/4138051_Robust_optical_flow_from_photometric_invariants
*/

float2 GetSphericalRG(float3 Color)
{
    const float HalfPi = 1.0 / acos(0.0);

    // Precalculate (x*x + y*y)^0.5 and (x*x + y*y + z*z)^0.5
    float L1 = length(Color.rg);
    float L2 = length(Color.rgb);

    float2 Angles = 0.0;
    Angles[0] = (L1 == 0.0) ? 1.0 / sqrt(2.0) : Color.g / L1;
    Angles[1] = (L2 == 0.0) ? 1.0 / sqrt(3.0) : L1 / L2;

    return saturate(asin(abs(Angles)) * HalfPi);
}

float GetHalfMax()
{
    // Get the Half format distribution of bits
    // Sign Exponent Significand
    // 0    00000    000000000
    const int SignBit = 0;
    const int ExponentBits = 5;
    const int SignificandBits = 10;

    const int Bias = -15;
    const int Exponent = exp2(ExponentBits);
    const int Significand = exp2(SignificandBits);

    const float MaxExponent = ((float)Exponent - (float)exp2(1)) + (float)Bias;
    const float MaxSignificand = 1.0 + (((float)Significand - 1.0) / (float)Significand);

    return (float)pow(-1, SignBit) * (float)exp2(MaxExponent) * MaxSignificand;
}

// [-Half, Half] -> [-1.0, 1.0]
float2 UnpackMotionVectors(float2 Half2)
{
    return clamp(Half2 / GetHalfMax(), -1.0, 1.0);
}

// [-1.0, 1.0] -> [-Half, Half]
float2 PackMotionVectors(float2 Half2)
{
    return Half2 * GetHalfMax();
}

// [-1.0, 1.0] -> [Width, Height]
float2 UnnormalizeMotionVectors(float2 Vectors, float2 ImageSize)
{
    return Vectors / abs(ImageSize);
}

// [Width, Height] -> [-1.0, 1.0]
float2 NormalizeMotionVectors(float2 Vectors, float2 ImageSize)
{
    return clamp(Vectors * abs(ImageSize), -1.0, 1.0);
}

/*
    Lucas-Kanade optical flow with bilinear fetches
    ---
    Calculate Lucas-Kanade optical flow by solving (A^-1 * B)
    [A11 A12]^-1 [-B1] -> [ A11/D -A12/D] [-B1]
    [A21 A22]^-1 [-B2] -> [-A21/D  A22/D] [-B2]
    ---
    [ Ix^2/D -IxIy/D] [-IxIt]
    [-IxIy/D  Iy^2/D] [-IyIt]
*/

float2 GetPixelPyLK
(
    float2 MainTex,
    float2 Vectors,
    sampler2D SampleI0,
    sampler2D SampleI1
)
{
    // Initialize variables
    float4 WarpTex;
    float IxIx = 0.0;
    float IyIy = 0.0;
    float IxIy = 0.0;
    float IxIt = 0.0;
    float IyIt = 0.0;

    // Get required data to calculate main texel data
    const float Pi2 = acos(-1.0) * 2.0;

    // Unpack motion vectors
    Vectors = UnpackMotionVectors(Vectors);

    // Calculate main texel data (TexelSize, TexelLOD)
    WarpTex = float4(MainTex, MainTex + Vectors);

    // Get gradient information
    float4 TexIx = ddx(WarpTex);
    float4 TexIy = ddy(WarpTex);
    float2 PixelSize = abs(TexIx.xy) + abs(TexIy.xy);

    [loop] for(int i = 1; i < 4; ++i)
    {
        [loop] for(int j = 0; j < 4 * i; ++j)
        {
            float Shift = (Pi2 / (4.0 * float(i))) * float(j);
            float2 AngleShift = 0.0;
            sincos(Shift, AngleShift.x, AngleShift.y);
            AngleShift *= float(i);

            // Get temporal gradient
            float4 TexIT = WarpTex.xyzw + (AngleShift.xyxy * PixelSize.xyxy);
            float2 I0 = tex2Dgrad(SampleI0, TexIT.xy, TexIx.xy, TexIy.xy).rg;
            float2 I1 = tex2Dgrad(SampleI1, TexIT.zw, TexIx.zw, TexIy.zw).rg;
            float2 IT = I0 - I1;

            // Get spatial gradient
            float4 OffsetNS = AngleShift.xyxy + float4(0.0, -1.0, 0.0, 1.0);
            float4 OffsetEW = AngleShift.xyxy + float4(-1.0, 0.0, 1.0, 0.0);
            float4 NS = WarpTex.xyxy + (OffsetNS * PixelSize.xyxy);
            float4 EW = WarpTex.xyxy + (OffsetEW * PixelSize.xyxy);
            float2 N = tex2Dgrad(SampleI0, NS.xy, TexIx.xy, TexIy.xy).rg;
            float2 S = tex2Dgrad(SampleI0, NS.zw, TexIx.xy, TexIy.xy).rg;
            float2 E = tex2Dgrad(SampleI0, EW.xy, TexIx.xy, TexIy.xy).rg;
            float2 W = tex2Dgrad(SampleI0, EW.zw, TexIx.xy, TexIy.xy).rg;
            float2 Ix = E - W;
            float2 Iy = N - S;

            // IxIx = A11; IyIy = A22; IxIy = A12/A22
            IxIx += dot(Ix, Ix);
            IyIy += dot(Iy, Iy);
            IxIy += dot(Ix, Iy);

            // IxIt = B1; IyIt = B2
            IxIt += dot(Ix, IT);
            IyIt += dot(Iy, IT);
        }
    }

    /*
        Calculate Lucas-Kanade matrix
        ---
        [ Ix^2/D -IxIy/D] [-IxIt]
        [-IxIy/D  Iy^2/D] [-IyIt]
    */

    // Calculate A^-1 and B
    float D = determinant(float2x2(IxIx, IxIy, IxIy, IyIy));
    float2x2 A = float2x2(IyIy, -IxIy, -IxIy, IxIx) / D;
    float2 B = float2(-IxIt, -IyIt);

    // Calculate A^T*B
    float2 Flow = (D == 0.0) ? 0.0 : mul(B, A);

    // Propagate normalized motion vectors
    Vectors += NormalizeMotionVectors(Flow, PixelSize);

    // Clamp motion vectors to restrict range to valid lengths
    Vectors = clamp(Vectors, -1.0, 1.0);

    // Pack motion vectors to Half format
    return PackMotionVectors(Vectors);
}