Multi-Level Bilateral Upsampling on the GPU¶
This function implements a multi-level bilateral filtering technique for joint bilateral upsampling.
This technique upsamples a low-resolution image (e.g., motion vectors) using a high-resolution guide image (the image itself, color buffer, depth buffer) while preserving edges. It combines information from the low-resolution image and a downsampled version of the high-resolution guide.
See also
Kopf, J., Cohen, M. F., Lischinski, D., & Uyttendaele, M. (2007). Joint bilateral upsampling. ACM SIGGRAPH 2007 Papers, 96. https://doi.org/10.1145/1275808.1276497
Multi-Level Bilateral Filtering¶
Joint bilateral upsampling effectively transfers details from a high-resolution guide to a low-resolution image. However, using a single guide level can lead to artifacts, especially around sharp edges. Multi-level bilateral filtering addresses this by incorporating information from a downsampled version of the guide, providing a broader context for the filtering process. This results in smoother upsampling with better edge preservation.
/*
Joint Bilateral Upsampling implemented in HLSL. Inspired by Kopf et al. (2007) and Riemens et al. (2009).
---
Kopf, J., Cohen, M. F., Lischinski, D., & Uyttendaele, M. (2007). Joint bilateral upsampling. ACM SIGGRAPH 2007 Papers, 96. https://doi.org/10.1145/1275808.1276497
Riemens, A. K., Gangwal, O. P., Barenbrug, B., & Berretty, R.-P. M. (2009). Multistep joint bilateral depth upsampling. In M. Rabbani & R. L. Stevenson (Eds.), SPIE Proceedings (Vol. 7257, p. 72570M). SPIE. https://doi.org/10.1117/12.805640
*/
float4 JointBilateralUpsample(
sampler Image, // This should be 1/2 the size as GuideHigh
sampler GuideLow, // This should be 1/2 the size as GuideHigh
sampler GuideHigh, // This should be 2/1 the size as Image and GuideLow
float2 Tex
)
{
// Initialize variables
float2 PixelSize = ldexp(fwidth(Tex.xy), 1.0);
float4 GuideHighSample = tex2D(GuideHigh, Tex);
float4 ImageSum = 0.0;
float ImageWeightSum = 0.0;
float4 BilateralSum = 0.0;
float BilateralWeightSum = 0.0;
[unroll]
for (int x = -1; x <= 1; x++)
{
[unroll]
for (int y = -1; y <= 1; y++)
{
// Calculate offset
float2 Offset = float2(float(x), float(y));
float2 OffsetTex = Tex + (Offset * PixelSize);
// Sample image and guide
float4 ImageSample = tex2Dlod(Image, float4(OffsetTex, 0.0, 0.0));
float4 GuideLowSample = tex2D(GuideLow, OffsetTex);
// Calculate weight
float4 Delta = GuideHighSample - GuideLowSample;
float Dot4 = rsqrt(dot(Delta, Delta) + 1.0);
float Weight = smoothstep(0.0, 1.0, Dot4);
Weight *= Weight;
// Accumulate sum
ImageSum += ImageSample;
ImageWeightSum += 1.0;
// Accumulate bilateral
BilateralSum += (ImageSample * Weight);
BilateralWeightSum += Weight;
}
}
ImageSum /= ImageWeightSum;
BilateralSum = (BilateralWeightSum > 0.0) ? BilateralSum / BilateralWeightSum : ImageSum;
return BilateralSum;
}
Self-Guided Optimization¶
In the original multi-level bilateral filtering approach, the spatial weight is calculated using the difference between the high-resolution guide and its downsampled version. However, in scenarios where the low-resolution image and the downsampled guide share similar properties (e.g., when the guide is derived from the image itself), we can simplify the process by directly using the low-resolution image for calculating the spatial weight.
This modification eliminates the need for an explicit downsampled guide and can improve performance by reducing texture fetches. Using the image as a guide, we maintain the edge-preserving characteristics while optimizing the computation.
/*
This is an optimized, self-guided version for Joint Bilateral Upsampling implemented in HLSL. Inspired by Kopf et al. (2007) and Riemens et al. (2009).
---
Kopf, J., Cohen, M. F., Lischinski, D., & Uyttendaele, M. (2007). Joint bilateral upsampling. ACM SIGGRAPH 2007 Papers, 96. https://doi.org/10.1145/1275808.1276497
Riemens, A. K., Gangwal, O. P., Barenbrug, B., & Berretty, R.-P. M. (2009). Multistep joint bilateral depth upsampling. In M. Rabbani & R. L. Stevenson (Eds.), SPIE Proceedings (Vol. 7257, p. 72570M). SPIE. https://doi.org/10.1117/12.805640
*/
float2 SelfBilateralUpsampleXY(
sampler Image, // This should be 1/2 the size as GuideHigh
sampler Guide, // This should be 2/1 the size as Image and GuideLow
float2 Tex
)
{
// Initialize variables
float2 PixelSize = ldexp(fwidth(Tex.xy), 1.0);
// Constants for Array textures
const int ArrayCount = 9;
int ImageIndex = 0;
// Variables for Array textures
float2 ImageArray[ArrayCount];
float2 ImageCenter;
[unroll]
for (int x = -1; x <= 1; x++)
{
[unroll]
for (int y = -1; y <= 1; y++)
{
// Fetch pixel
float2 Offset = float2(float(x), float(y));
ImageArray[ImageIndex] = tex2D(Image, Tex + (Offset * PixelSize)).xy;
// Store the center pixel elsewhere too
if ((x == 0) && (y == 0))
{
ImageCenter = ImageArray[ImageIndex];
}
ImageIndex += 1;
}
}
// Store ImageCenter reference
float4 Reference = float4(tex2D(Guide, Tex).xy, ImageCenter);
// Initialize variables to compute
float2 ImageSum = 0.0;
float ImageWeightSum = 0.0;
float2 BilateralSum = 0.0;
float BilateralWeightSum = 0.0;
[unroll]
for (int i = 0; i < ArrayCount; i++)
{
// Calculate weight
float4 Delta = ImageArray[i].xyxy - Reference;
float MaxDot = rsqrt(dot(Delta, Delta) + 1.0);
float Weight = smoothstep(0.0, 1.0, MaxDot);
Weight *= Weight;
// Accumulate sum
ImageSum += ImageArray[i].xy;
ImageWeightSum += 1.0;
// Accumulate bilateral
BilateralSum += (ImageArray[i].xy * Weight);
BilateralWeightSum += Weight;
}
ImageSum /= ImageWeightSum;
BilateralSum = (BilateralWeightSum > 0.0) ? BilateralSum / BilateralWeightSum : ImageSum;
return BilateralSum;
}