Lucas-Kanade Optical Flow on The GPU#

An optical flow algorithm estimates the motion between frames. Optical flow is essential in object detection, object recognition, motion estimation, video compression, and video effects.

This post covers an HLSL implementation of Lucas-Kanade optical flow.

Algorithm#

The pyramid LK algorithm consists of the following steps.

  1. Build the current frame’s YUV444 mipmap pyramid

  2. Set the initial motion vector to <0.0, 0.0>

  3. Compute optical flow from the smallest to largest pyramid level

  4. Immediately cache the current frame for the next frame

  5. Filter the optical flow

Source Code#

Note

The code contains generic functions, so you may need to change some parts of the code so it is compatible with your setup.

Converting sRGB to YUV444#
/*
    "Recommendation T.832 (06/2019)". p. 185 Table D.6 - Pseudocode for function FwdColorFmtConvert1().

    https://www.itu.int/rec/T-REC-T.832
*/

float3 SRGBtoYUV444(float3 SRGB, bool NormalizeOutput)
{
    float3 YUV;

    YUV.z = SRGB.b - SRGB.r;
    YUV.y = -SRGB.r + SRGB.g - (YUV.z * 0.5);
    YUV.x = SRGB.g - (YUV.y * 0.5);
    YUV.yz = NormalizeOutput ? (YUV.yz * 0.5) + 0.5 : YUV.yz;

    return YUV;
}
Lucas-Kanade Optical Flow#
/*
    Lucas-Kanade optical flow with bilinear fetches. The algorithm is motified to not output in pixels, but normalized displacements.

    ---

    Gauss-Newton Steepest Descent Inverse Additive Algorithm

    https://www.ri.cmu.edu/pub_files/pub3/baker_simon_2002_3/baker_simon_2002_3.pdf

    ---

    Calculate Lucas-Kanade optical flow by solving (A^-1 * B)

    [A11 A12]^-1 [-B1] -> [ A11/D -A12/D] [-B1]
    [A21 A22]^-1 [-B2] -> [-A21/D  A22/D] [-B2]

    [ Ix^2/D -IxIy/D] [-IxIt]
    [-IxIy/D  Iy^2/D] [-IyIt]
*/

float2 LucasKanade
(
    float2 MainTex, // Texture coordinates
    float2 Vectors, // Previous motion vectors [-1.0, 1.0)
    sampler2D SampleT, // Template
    sampler2D SampleI // Image
)
{
    // Initialize variables
    float4 WarpTex;
    float IxIx = 0.0;
    float IyIy = 0.0;
    float IxIy = 0.0;
    float IxIt = 0.0;
    float IyIt = 0.0;

    // Initiate main & warped texture coordinates
    WarpTex = MainTex.xyxy;

    // Calculate warped texture coordinates
    WarpTex.zw -= 0.5; // Pull into [-0.5, 0.5) range
    WarpTex.zw -= Vectors; // Inverse warp in the [-0.5, 0.5) range
    WarpTex.zw = saturate(WarpTex.zw + 0.5); // Push and clamp into [0.0, 1.0) range

    // Get gradient information
    float4 TexIx = ddx(WarpTex);
    float4 TexIy = ddy(WarpTex);
    float2 PixelSize = abs(TexIx.xy) + abs(TexIy.xy);

    // Get required data to calculate main window data
    const int WindowSize = 3;
    const int WindowHalf = WindowSize / 2;

    [loop] for (int i = 0; i < (WindowSize * WindowSize); i++)
    {
        float2 Kernel = float2(i % WindowSize, i / WindowSize) - WindowHalf;

        // Get temporal gradient
        float4 TexIT = WarpTex.xyzw + (Kernel.xyxy * PixelSize.xyxy);
        float3 T = tex2Dgrad(SampleT, TexIT.xy, TexIx.xy, TexIy.xy).xyz;
        float3 I = tex2Dgrad(SampleI, TexIT.zw, TexIx.zw, TexIy.zw).xyz;
        float3 IT = I - T;

        // Get spatial gradient
        float4 OffsetNS = Kernel.xyxy + float4(0.0, -1.0, 0.0, 1.0);
        float4 OffsetEW = Kernel.xyxy + float4(-1.0, 0.0, 1.0, 0.0);
        float4 NS = WarpTex.xyxy + (OffsetNS * PixelSize.xyxy);
        float4 EW = WarpTex.xyxy + (OffsetEW * PixelSize.xyxy);
        float3 N = tex2Dgrad(SampleT, NS.xy, TexIx.xy, TexIy.xy).xyz;
        float3 S = tex2Dgrad(SampleT, NS.zw, TexIx.xy, TexIy.xy).xyz;
        float3 E = tex2Dgrad(SampleT, EW.xy, TexIx.xy, TexIy.xy).xyz;
        float3 W = tex2Dgrad(SampleT, EW.zw, TexIx.xy, TexIy.xy).xyz;
        float3 Ix = E - W;
        float3 Iy = N - S;

        // IxIx = A11; IyIy = A22; IxIy = A12/A22
        IxIx += dot(Ix, Ix);
        IyIy += dot(Iy, Iy);
        IxIy += dot(Ix, Iy);

        // IxIt = B1; IyIt = B2
        IxIt += dot(Ix, IT);
        IyIt += dot(Iy, IT);
    }

    /*
        Calculate Lucas-Kanade matrix

        [ Ix^2/D -IxIy/D] [-IxIt]
        [-IxIy/D  Iy^2/D] [-IyIt]
    */

    /*
        Calculate Lucas-Kanade matrix
    */

    // Construct matrices
    float2x2 A = float2x2(IxIx, IxIy, IxIy, IyIy);
    float2 B = float2(IxIt, IyIt);

    // Calculate C factor
    float N = dot(B, B);
    float2 DotBA = float2(dot(B, A[0]), dot(B, A[1]));
    float D = dot(DotBA, B);
    float C = N / D;

    // Calculate -C*B
    float2 Flow = (abs(D) > 0.0) ? -mul(C, B) : 0.0;

    // Normalize motion vectors
    Flow *= PixelSize;

    // Propagate normalized motion vectors in Norm Range
    Vectors += Flow;

    // Clamp motion vectors to restrict range to valid lengths
    Vectors = clamp(Vectors, -1.0, 1.0);

    return Vectors;
}